Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria
Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...
-д хадгалсан:
| Үндсэн зохиолч: | Weigang Liang (734333) (author) |
|---|---|
| Бусад зохиолчид: | Jingya Li (309241) (author), Xiaolei Wang (139592) (author), John P. Giesy (302766) (author), Xiaoli Zhao (118708) (author) |
| Хэвлэсэн: |
2025
|
| Нөхцлүүд: | |
| Шошгууд: |
Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Ecological similarities and dissimilarities between donor and recipient regions shape global plant naturalizations
-н: Shuya Fan (12861446)
Хэвлэсэн: (2025) -
V1-V4_NativeSpecies
-н: Thomas Evans (20844503)
Хэвлэсэн: (2025) -
Data and code for manuscript <b>Artificial Surface Water Broadens the Spatiotemporal Footprint of Herbivores and Alters Species Responses, published in Ecological Applications</b>
-н: Robert McCleery (16548156)
Хэвлэсэн: (2025) -
Data and code for models and plots to accompany the manuscript "Traits explain canopy tree occurrence along regional environmental gradients, a subset combine to be useful."
-н: PETER VESK (1145399)
Хэвлэсэн: (2025) -
<b>Data for "</b>Nitrogen enrichment amplifies the role of dominant species in sustaining ecosystem multifunctionality across spatial scales<b>"</b>
-н: Xi Zhou (22650125)
Хэвлэсэн: (2025)