Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria
Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...
Сохранить в:
| Главный автор: | Weigang Liang (734333) (author) |
|---|---|
| Другие авторы: | Jingya Li (309241) (author), Xiaolei Wang (139592) (author), John P. Giesy (302766) (author), Xiaoli Zhao (118708) (author) |
| Опубликовано: |
2025
|
| Предметы: | |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Ecological similarities and dissimilarities between donor and recipient regions shape global plant naturalizations
по: Shuya Fan (12861446)
Опубликовано: (2025) -
V1-V4_NativeSpecies
по: Thomas Evans (20844503)
Опубликовано: (2025) -
Data and code for manuscript <b>Artificial Surface Water Broadens the Spatiotemporal Footprint of Herbivores and Alters Species Responses, published in Ecological Applications</b>
по: Robert McCleery (16548156)
Опубликовано: (2025) -
Data and code for models and plots to accompany the manuscript "Traits explain canopy tree occurrence along regional environmental gradients, a subset combine to be useful."
по: PETER VESK (1145399)
Опубликовано: (2025) -
<b>Data for "</b>Nitrogen enrichment amplifies the role of dominant species in sustaining ecosystem multifunctionality across spatial scales<b>"</b>
по: Xi Zhou (22650125)
Опубликовано: (2025)