Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria
Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...
Збережено в:
| Автор: | Weigang Liang (734333) (author) |
|---|---|
| Інші автори: | Jingya Li (309241) (author), Xiaolei Wang (139592) (author), John P. Giesy (302766) (author), Xiaoli Zhao (118708) (author) |
| Опубліковано: |
2025
|
| Предмети: | |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Схожі ресурси
Схожі ресурси
-
Ecological similarities and dissimilarities between donor and recipient regions shape global plant naturalizations
за авторством: Shuya Fan (12861446)
Опубліковано: (2025) -
V1-V4_NativeSpecies
за авторством: Thomas Evans (20844503)
Опубліковано: (2025) -
Data and code for manuscript <b>Artificial Surface Water Broadens the Spatiotemporal Footprint of Herbivores and Alters Species Responses, published in Ecological Applications</b>
за авторством: Robert McCleery (16548156)
Опубліковано: (2025) -
Data and code for models and plots to accompany the manuscript "Traits explain canopy tree occurrence along regional environmental gradients, a subset combine to be useful."
за авторством: PETER VESK (1145399)
Опубліковано: (2025) -
<b>Data for "</b>Nitrogen enrichment amplifies the role of dominant species in sustaining ecosystem multifunctionality across spatial scales<b>"</b>
за авторством: Xi Zhou (22650125)
Опубліковано: (2025)