Instant Protection Nanospray Bandage Driven Anti-Scar Wound Healing
Rapid wound coverage and bioactive intervention remain critical yet unmet needs in acute and traumatic wound management. Here, an instant film-forming nanospray bandage (QSFNPs_FFS) incorporating quercetin-loaded silk fibroin nanoparticles (QSFNPs) is developed as a multifunctional wound care strate...
Αποθηκεύτηκε σε:
| Κύριος συγγραφέας: | |
|---|---|
| Άλλοι συγγραφείς: | , , , , , |
| Έκδοση: |
2025
|
| Θέματα: | |
| Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
| Περίληψη: | Rapid wound coverage and bioactive intervention remain critical yet unmet needs in acute and traumatic wound management. Here, an instant film-forming nanospray bandage (QSFNPs_FFS) incorporating quercetin-loaded silk fibroin nanoparticles (QSFNPs) is developed as a multifunctional wound care strategy offering immediate protection and regeneration. The nanospray bandage is rationally engineered with clinically relevant excipients to form a rapid protective barrier on the wound surface while enabling sustained release of quercetin from QSFNPs for scar-free tissue regeneration. The instant protective film offers multifunctional barrier activity, including broad-spectrum antibacterial efficiency, significant occlusive retention, and Ultraviolet B (UVB, 304 nm) protection. The formulation modulates wound immune dynamics by attenuating oxidative stress and regulating early inflammatory responses. The released quercetin further guides the regenerative process while suppressing yes-associated protein (YAP) and transforming growth factor beta 1 (TGFβ1), thereby regulating pro-fibrotic signaling. Treatment with nanospray bandage in rabbit full-thickness wound models exhibits accelerated antiscar healing, highlighting its translational potential for acute and traumatic wound management. |
|---|