Figure 3 from Predicting Molecular Subtype and Survival of Rhabdomyosarcoma Patients Using Deep Learning of H&E Images: A Report from the Children's Oncology Group

<p><i>TP53</i> gene mutation prediction from H&E images. <b>A,</b> Workflow for deep learning of <i>TP53</i> mutations from FN-RMS WSIs. <b>B</b> and <b>C,</b> Representative (<b>B</b>) H&E images and (<b>C&l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: David Milewski (15050643) (author)
Weitere Verfasser: Hyun Jung (15050646) (author), G. Thomas Brown (15050649) (author), Yanling Liu (15050652) (author), Ben Somerville (15050655) (author), Curtis Lisle (15050658) (author), Marc Ladanyi (15050661) (author), Erin R. Rudzinski (15050664) (author), Hyoyoung Choo-Wosoba (15050667) (author), Donald A. Barkauskas (15050670) (author), Tammy Lo (15050673) (author), David Hall (15050676) (author), Corinne M. Linardic (15050679) (author), Jun S. Wei (14955721) (author), Hsien-Chao Chou (14955718) (author), Stephen X. Skapek (15050682) (author), Rajkumar Venkatramani (15050685) (author), Peter K. Bode (15050688) (author), Seth M. Steinberg (15043179) (author), George Zaki (15050691) (author), Igor B. Kuznetsov (15050694) (author), Douglas S. Hawkins (15050697) (author), Jack F. Shern (14938001) (author), Jack Collins (15050700) (author), Javed Khan (15046967) (author)
Veröffentlicht: 2025
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:<p><i>TP53</i> gene mutation prediction from H&E images. <b>A,</b> Workflow for deep learning of <i>TP53</i> mutations from FN-RMS WSIs. <b>B</b> and <b>C,</b> Representative (<b>B</b>) H&E images and (<b>C</b>) class activation maps of a TP53 wild-type tumor and a tumor with a TP53 p.P278T mutation (VAF = 0.474). <b>D,</b> Confusion matrix for predictions on a test dataset. Micro F1, Macro F1, and Matthew's correlation coefficient shown below. <b>E,</b> Performance statistics for <i>TP53</i> mutation prediction. <b>F,</b> Average ROC curve for <i>TP53</i> mutation prediction using holdout test data. <b>G,</b> Dot plot of <i>TP53</i> mutant samples (<i>n</i> = 15) showing relationship between <i>TP53</i> mutation VAF and A.I. positive prediction probability. Statistical analysis was performed using the Mann–Whitney <i>U</i> test.</p>