Design-Based Causal Inference with Missing Outcomes: Missingness Mechanisms, Imputation-Assisted Randomization Tests, and Covariate Adjustment

<p>Design-based causal inference, also known as randomization-based or finite-population causal inference, is one of the most widely used causal inference frameworks, largely due to the merit that its validity can be guaranteed by study design (e.g., randomized experiments) and does not requir...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Siyu Heng (13359471) (author)
مؤلفون آخرون: Jiawei Zhang (294744) (author), Yang Feng (414202) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!