Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
In response to the growing challenges of global warming and the energy crisis, the development of advanced personal thermal management fabrics is essential for conserving thermal energy, reducing carbon emissions, and ensuring thermal comfort. In this article, we present an effort to develop a polys...
Zapisane w:
| 1. autor: | |
|---|---|
| Kolejni autorzy: | , , , , , |
| Wydane: |
2025
|
| Hasła przedmiotowe: | |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|
| _version_ | 1849927634611339264 |
|---|---|
| author | Madhurima Das (2036083) |
| author2 | Ahmadreza Moradi (19064960) Joanna Knapczyk-Korczak (8180214) Piotr K. Szewczyk (8532783) Michał Kopacz (22681642) Waldemar Pichór (22681645) Urszula Stachewicz (1556359) |
| author2_role | author author author author author author |
| author_facet | Madhurima Das (2036083) Ahmadreza Moradi (19064960) Joanna Knapczyk-Korczak (8180214) Piotr K. Szewczyk (8532783) Michał Kopacz (22681642) Waldemar Pichór (22681645) Urszula Stachewicz (1556359) |
| author_role | author |
| dc.creator.none.fl_str_mv | Madhurima Das (2036083) Ahmadreza Moradi (19064960) Joanna Knapczyk-Korczak (8180214) Piotr K. Szewczyk (8532783) Michał Kopacz (22681642) Waldemar Pichór (22681645) Urszula Stachewicz (1556359) |
| dc.date.none.fl_str_mv | 2025-11-25T12:25:32Z |
| dc.identifier.none.fl_str_mv | 10.1021/acsami.5c20292.s002 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/media/Breathable_Thermally_Insulating_Phase-Change_Fibrous_Mat_and_Yarn_Inspired_by_Penguin_Feather_Microstructure_for_Personal_Thermal_Management/30705607 |
| dc.rights.none.fl_str_mv | CC BY-NC 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Genetics Molecular Biology Evolutionary Biology Developmental Biology Inorganic Chemistry Space Science Chemical Sciences not elsewhere classified thermal conductivity coefficient specific temperature range repeated thermal cycling reducing carbon emissions personal thermal management penguin feather microstructure infrared imaging reveals incorporating peg improves generation wearable textiles excellent thermal stability ensuring thermal comfort effectively containing peg drastic temperature changes change fiber mats 89 j g 63 ± 0 13 ± 0 fibrous mats show fabricated electrospun mat conserving thermal energy changeable fibrous mat change fibrous mat thermally insulating phase alongside thermal performance fibrous mat energy crisis unique morphology structural integrity results position promising candidate mechanical properties growing challenges global warming 30 cycles 033 w |
| dc.title.none.fl_str_mv | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| dc.type.none.fl_str_mv | Dataset Media info:eu-repo/semantics/publishedVersion dataset |
| description | In response to the growing challenges of global warming and the energy crisis, the development of advanced personal thermal management fabrics is essential for conserving thermal energy, reducing carbon emissions, and ensuring thermal comfort. In this article, we present an effort to develop a polystyrene (PS)–polyethylene glycol (PEG)-based fibrous mat and yarn with unique morphology, inspired by natural systems like penguin feathers. This material not only undergoes phase changes within a specific temperature range but also demonstrates excellent thermal insulation properties, effectively minimizing heat flux. Incorporating PEG improves the mechanical properties of both the fibrous mat and yarn structures, with the material retaining its structural integrity and effectively containing PEG during repeated thermal cycling. The phase-changeable fibrous mat and yarn achieved fusion enthalpies of 33.13 ± 0.36 and 31.63 ± 0.89 J g<sup>–1</sup>, respectively, with excellent thermal stability and durability, as confirmed through multiple heating–cooling cycles of up to 30 cycles. The thermal conductivity coefficient (λ) of the PS–PEG fibrous mat reaches 0.033 W m<sup>–1</sup> K<sup>–1</sup>, signifying excellent thermal insulation properties of the fabricated electrospun mat. Infrared imaging reveals the effective thermal buffering effect of phase-change fiber mats and yarns when weaved onto cotton fabric under drastic temperature changes. Moreover, the fibrous mats show a water vapor transmission rate (WVTR) of 3735 ± 234 g m<sup>–2</sup> day<sup>–1</sup>, indicating high breathability, alongside thermal performance. These results position the proposed biomimetic fibrous material as a promising candidate for next-generation wearable textiles in the future that enhance personal thermal comfort, offering both performance and sustainability. |
| eu_rights_str_mv | openAccess |
| id | Manara_ff741471dc5d805f07541ed39b007ad4 |
| identifier_str_mv | 10.1021/acsami.5c20292.s002 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30705607 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY-NC 4.0 |
| spelling | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal ManagementMadhurima Das (2036083)Ahmadreza Moradi (19064960)Joanna Knapczyk-Korczak (8180214)Piotr K. Szewczyk (8532783)Michał Kopacz (22681642)Waldemar Pichór (22681645)Urszula Stachewicz (1556359)GeneticsMolecular BiologyEvolutionary BiologyDevelopmental BiologyInorganic ChemistrySpace ScienceChemical Sciences not elsewhere classifiedthermal conductivity coefficientspecific temperature rangerepeated thermal cyclingreducing carbon emissionspersonal thermal managementpenguin feather microstructureinfrared imaging revealsincorporating peg improvesgeneration wearable textilesexcellent thermal stabilityensuring thermal comforteffectively containing pegdrastic temperature changeschange fiber mats89 j g63 ± 013 ± 0fibrous mats showfabricated electrospun matconserving thermal energychangeable fibrous matchange fibrous matthermally insulating phasealongside thermal performancefibrous matenergy crisisunique morphologystructural integrityresults positionpromising candidatemechanical propertiesgrowing challengesglobal warming30 cycles033 wIn response to the growing challenges of global warming and the energy crisis, the development of advanced personal thermal management fabrics is essential for conserving thermal energy, reducing carbon emissions, and ensuring thermal comfort. In this article, we present an effort to develop a polystyrene (PS)–polyethylene glycol (PEG)-based fibrous mat and yarn with unique morphology, inspired by natural systems like penguin feathers. This material not only undergoes phase changes within a specific temperature range but also demonstrates excellent thermal insulation properties, effectively minimizing heat flux. Incorporating PEG improves the mechanical properties of both the fibrous mat and yarn structures, with the material retaining its structural integrity and effectively containing PEG during repeated thermal cycling. The phase-changeable fibrous mat and yarn achieved fusion enthalpies of 33.13 ± 0.36 and 31.63 ± 0.89 J g<sup>–1</sup>, respectively, with excellent thermal stability and durability, as confirmed through multiple heating–cooling cycles of up to 30 cycles. The thermal conductivity coefficient (λ) of the PS–PEG fibrous mat reaches 0.033 W m<sup>–1</sup> K<sup>–1</sup>, signifying excellent thermal insulation properties of the fabricated electrospun mat. Infrared imaging reveals the effective thermal buffering effect of phase-change fiber mats and yarns when weaved onto cotton fabric under drastic temperature changes. Moreover, the fibrous mats show a water vapor transmission rate (WVTR) of 3735 ± 234 g m<sup>–2</sup> day<sup>–1</sup>, indicating high breathability, alongside thermal performance. These results position the proposed biomimetic fibrous material as a promising candidate for next-generation wearable textiles in the future that enhance personal thermal comfort, offering both performance and sustainability.2025-11-25T12:25:32ZDatasetMediainfo:eu-repo/semantics/publishedVersiondataset10.1021/acsami.5c20292.s002https://figshare.com/articles/media/Breathable_Thermally_Insulating_Phase-Change_Fibrous_Mat_and_Yarn_Inspired_by_Penguin_Feather_Microstructure_for_Personal_Thermal_Management/30705607CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307056072025-11-25T12:25:32Z |
| spellingShingle | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management Madhurima Das (2036083) Genetics Molecular Biology Evolutionary Biology Developmental Biology Inorganic Chemistry Space Science Chemical Sciences not elsewhere classified thermal conductivity coefficient specific temperature range repeated thermal cycling reducing carbon emissions personal thermal management penguin feather microstructure infrared imaging reveals incorporating peg improves generation wearable textiles excellent thermal stability ensuring thermal comfort effectively containing peg drastic temperature changes change fiber mats 89 j g 63 ± 0 13 ± 0 fibrous mats show fabricated electrospun mat conserving thermal energy changeable fibrous mat change fibrous mat thermally insulating phase alongside thermal performance fibrous mat energy crisis unique morphology structural integrity results position promising candidate mechanical properties growing challenges global warming 30 cycles 033 w |
| status_str | publishedVersion |
| title | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| title_full | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| title_fullStr | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| title_full_unstemmed | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| title_short | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| title_sort | Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management |
| topic | Genetics Molecular Biology Evolutionary Biology Developmental Biology Inorganic Chemistry Space Science Chemical Sciences not elsewhere classified thermal conductivity coefficient specific temperature range repeated thermal cycling reducing carbon emissions personal thermal management penguin feather microstructure infrared imaging reveals incorporating peg improves generation wearable textiles excellent thermal stability ensuring thermal comfort effectively containing peg drastic temperature changes change fiber mats 89 j g 63 ± 0 13 ± 0 fibrous mats show fabricated electrospun mat conserving thermal energy changeable fibrous mat change fibrous mat thermally insulating phase alongside thermal performance fibrous mat energy crisis unique morphology structural integrity results position promising candidate mechanical properties growing challenges global warming 30 cycles 033 w |